Inorganic:Chemistr

Magnetic Susceptibility and Ground-State Zero-Field Splitting in High-Spin Mononuclear Manganese(III) of Inverted N-Methylated Porphyrin Complexes: Mn(2-NCH3NCTPP)Br#

Sheng-Wei Hung,† Fuh-An Yang,† Jyh-Horung Chen,*,† Shin-Shin Wang,‡ and Jo-Yu Tung*,§

*Department of Chemistry, National Chung-Hsing Uni*V*ersity, Taichung 40227, Taiwan, Material Chemical Laboratories, Hsin-Chu 300, Taiwan, and Department of Occupational Safety and Health, Chung Hwai Uni*V*ersity of Medical Technology, Tainan 717, Taiwan*

Received March 20, 2008

The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N′′) tin(IV) methanol solvate [Sn(2-NCH₃NCTPP)Cl₂ · 2(0.2MeOH); **6** · 2(0.2MeOH)] and paramagnetic bromo(2-aza-2methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N′′)-manganese(III) [Mn(2-NCH3NCTPP)Br; **5**] were determined. The coordination sphere around Sn⁴⁺ in 6 · 2(0.2MeOH) is described as six-coordinate octahedron (OC- 6) in which the apical site is occupied by two transoid C \vert - ligands, whereas for the Mn³⁺ ion in **5**, it is a fivecoordinate square pyramid (*SPY-5*) in which the unidentate Br⁻ ligand occupies the axial site. The *g* value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) $(S = 2)$ in **5**. The magnitude of axial (*D*) and rhombic (*E*) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm⁻¹ and -0.0013 cm-¹ , respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A) · · · Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of **⁵** are arranged in a one-dimensional network. A weak Mn(III) · · · Mn(III) ferromagnetic interaction ($J = 0.56$ cm⁻¹) operates via a
[Mn(1) - C(2) - C(1) - N(4) - C(45) - H(45A) . . . Br(1) - Mn(1)] superaxshange pathway in complex **5** $[Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A) \cdots Br(1)-Mn(1)]$ superexchange pathway in complex 5.

Introduction

In general, Electron Paramagnetic Resonance (EPR) spectroscopy at conventional microwave frequencies [X-band, ∼9 GHz (0.3 cm⁻¹); Q-band, ~35 GHz (1.2 cm⁻¹)] is not applicable to "EPR-silent" systems with integral-spin ground states where the zero-field splitting (ZFS) is larger than the microwave quantum, in particular, where the ZFS interaction approaches axial symmetry. $1-3$ Thus, conventional EPR studies of high-spin manganese(III) $(d^4, S = 2)$ compounds are rather
limited especially for the N-confused porphyrin (NCP) complex limited especially for the N-confused porphyrin (NCP) complex (NCP is also known as inverted porphyrin or 2-aza-21 carbaporphyrin). Recently, essential progress has been observed in the literature concerning the synthesis and characterization of NCP and its derivatives. Hung et $al⁴$ reported the X-ray structure of a five-coordinate manganese(III) complex of N-confused 5,10,15,20-tetraphenylporphyrin Mn(NCTPP)Br **(1)** (NCTPP, dianion of 5,10,15,20-tetraphenyl-*N*-confused porphyrin) and Harvey and $Ziegler⁵$ described the structural characterization of a six-coordinate Mn(III) complex of Mn(NCT- PP)(py)₂ (2). Krzystek and co-workers⁶ reported the highfrequency and -field electron paramagnetic resonance (HFEPR) study of complex **2**. It turned out that the inversion of a single pyrrole ring of **2** greatly changes the equatorial ligand field exerted and leads to large magnitudes of both the axial and rhombic ZFS (respectively, $D = -3.08$ cm⁻¹, $E = -0.61$
cm⁻¹) which are unprecedented in other Mn(III) porphyrinoids ⁶ cm^{-1}), which are unprecedented in other Mn(III) porphyrinoids.⁶

^{*} To whom correspondence should be addressed. E-mail: jyhhchen@

 $\frac{dF}{dt}$ Dedicated to Prof. Rob Dunbar (Case Western Reserve University) on the occasion of his 65th birthday.

the occasion of his 65th birthday. † National Chung-Hsing University.
† Material Chemical Laboratories. § Chung Hwai University of Medical Technology.

⁽¹⁾ Dexheimer, S. L.; Gohdes, J. W.; Chan, M. K.; Hagen, K. S.; Armstreng, W. H.; Klein, M. P. *J. Am. Chem. Soc.* **1989**, *111*, 8923.

⁽²⁾ Talsi, E. P; Bryliakov, K. P. *Mendelee*^V *Commun.* **²⁰⁰⁴**, 111. (3) Bryliakov, K. P.; Bahushkin, D. E.; Talsi, E. P. *Mendelee*V *Commun.* **1999**, 29.

⁽⁴⁾ Bohle, D. S.; Chen, W. C.; Hung, C. H. *Inorg. Chem.* **2002**, *41*, 3334.

⁽⁵⁾ Harvey, J. D.; Ziegler, C. J. *Chem. Commun.* **2003**, 2890.

⁽⁶⁾ Harvey, J. D.; Ziegler, C. J.; Telser, J.; Ozarowski, A.; Krzystek, J. *Inorg. Chem.* **2005**, *44*, 4451.

Inverted N-Methylated Porphyrin Complexes

Recently, Ziegler et al.⁷ reported an improved methodology for the synthesis of 2-N-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrin, 2-NCH3NCTPPH **(3)**. Compound **3** in this work was prepared in the way described by the Ziegler group using CH3I and *p*-xylene in 48.6% yield. Unlike the NH tautomerism that exists in NCTPP H_2 (4),⁸ the free base **3** has only one stable form. Thus, a placement of a Mn(III) ion ($I = 5/2$) with a paramagnetism and a Sn(IV) ion ($I =$ 1/2) with a diamagnetism in a core of N-methylated carbaporphyrin provides a promising route to synthesize a paramagnetic complex, bromo(2-aza-2-methyl-5,10,15,20 tetraphenyl-21-carbaporphyrinato-N,N′,N′′)-manganese(I-II) [Mn(2-NCH3NCTPP)Br; **5**] and a diamagnetic complex, dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) [Sn(2-NCH₃NCTPP)Cl₂; 6]. This new diamagnetic compound **6** is used as a diamagnetic correction for **5** in the solid-state magnetic susceptibility measurements.⁹ In this paper we focus on details of the manganese(III) electronic structure. Studies of temperature dependence of the magnetic susceptibility and of the effective moment show that $S = 2$ is the ground state for high-spin mononuclear Mn^{3+} in **5** at 20 °C. Application of the Bleaney-Bowers¹⁰ equation permits evaluation of *D*, $|2J|$, and an average *g* value for powder samples. Measurement of the ESR spectrum arising from 5 with the $S = 2$ state and application of the spin Hamiltonian (eq 1) permits derivation of the rhombic ZFS parameter *E*.

Experimental Section

Preparation of Complex 2-NCH3NCTPP (3). A solution of NCTPPH2 **(4)** (0.5 g, 0.81 mmol) and CH3I (0.3 mL, 2.1 mmol) in dry *p*-xylene (10 mL) in the presence of dry Cs_2CO_3 (0.5 g, 1.5 mmol) was heated for 2 h. After cooling down to room temperature (rt), the mixture was filtered and purified by column chromatographic separation with $EtOAc-CH₂Cl₂ [1:4 (v/v)]$ as a green band on silica gel (70-230 mesh, 60 g). Further recrystallization from CH2Cl2-MeOH [1:2 (v/v)] afforded **³** (0.3 g, 0.47 mmol, 48.6%) as a blue solid.

Sn(2-NCH3NCTPP)Cl2 (6). A mixture of 2-NCH3NCTPPH **(3)** $(50 \text{ mg}, 0.08 \text{ mmol})$ and $SnCl₂$ $(300 \text{ mg}, 1.6 \text{ mmol})$ was refluxed in pyridine (10 mL) for 30 min, poured into hexane (50 mL), and filtered, and the solid was dissolved in CH_2Cl_2 . The resulting CH_2Cl_2 solution was rotary evaporated to dryness, and the residue was purified by a silica gel column using $CH_2Cl_2/MeOH$ (2% MeOH) as the eluent, which on further recrystallization from CH₂Cl₂/MeOH afforded **6** (40 mg, 0.053 mmol, 66%) as a blue solid. Compound 6 was redissolved in CH_2Cl_2 and layered with MeOH to afford blue crystals for single-crystal X-ray analysis. ¹H NMR (599.95) MHz, CDCl₃, 20 °C): δ 8.98 [d, H_β, ³J(H-H) = 5.4 Hz]; 8.95 [d, H_a, ³*I*(H₁, ³*I*(H₁, ³*I*(H₁) = 4.8 Hz]; 8.82 [d H_{β} , ³ J (H-H) = 4.8 Hz]; 8.86 [d, H_{β}, ³ J (H-H) = 4.8 Hz]; 8.82 [d,
 H₂, ³ J (H-H) = 4.2 Hz]; 8.81 [d, H₂, ³ J (H-H) = 4.2 Hz]; 8.76 [d H_{β} , ³*J*(H-H) = 4.2 Hz]; 8.81 [d, H_{β}, ³*J*(H-H) = 4.2 Hz]; 8.76 [d,
 H_{γ} , ³*I*(H-H) = 4.2 Hz]; 8.22 [d, ³*I*(H-H) = 4.2 Hz, ₀.H (ortho H_{β} , ³*J*(H-H) = 4.2 Hz]; 8.22 [d, ³*J*(H-H) = 4.2 Hz, *o*-H (*ortho*
proton)] and 8.10 [d, ³*I*/H-H) = 4.2 Hz, *o*-H); 8.13 [d, ³*I*/H-H) proton)] and 8.10 [d, ${}^{3}J(H-H) = 4.2$ Hz, o-H]; 8.13 [d, ${}^{3}J(H-H)$ $= 7.2$ Hz, o -H] and 8.00 [d, $3J(H-H) = 7.2$ Hz, o -H]; 7.97 [d,

(10) Bleaney, B.; Bowers, K. D. *Proc. R. Soc. London.* **1952**, *A214*, 451.

 $3J(H-H) = 7.2$ Hz, $o-H$] and 7.61 [d, $3J(H-H) = 7.2$ Hz, $o-H$]; 7.47-7.78 [m, *meta* and *para* protons]; 3.30 (s, N-CH3). FAB-MS *m/z* (assignment. rel intensity): 154 ([NBA + H]⁺, 56.82), 761 ([Sn(4-NCH3NCTPP)]+, 48.11), 796 ([Sn(4-NCH3NCTPP)Cl]+, 100). UV-vis spectrum, λ (nm) $\left[\varepsilon \times 10^{-3}, M^{-1} \text{ cm}^{-1}\right]$ in CH₂Cl₂: 458 (126.1), 565 (29.8), 606 (31.4), 722 (23.3), 884 (32.2).

Mn(2-NCH3NCTPP)Br (5). A mixture of 2-NCH3NCTPPH **(3)** $(50 \text{ mg}, 0.08 \text{ mmol})$ in CH_2Cl_2 (20 mL) and MnBr_2 (52 mg, 0.24 mmol) in MeOH (1 mL) was refluxed for 3 h. After concentrating it, the residue was dissolved in CH_2Cl_2 and filtered. The filtrate was concentrated and the residue was purified by a silica gel column using CH_2Cl_2/EA [20% EA (ethyl acetate)] as the eluent to yield impure 5 , which upon further recrystallization from $CH₂Cl₂/EA$ afforded **5** (37 mg, 0.049 mmol, 61%) as a pure green solid. Compound 5 was redissolved in $CH₂Cl₂$ and layered with EA to afford green crystals for single-crystal X-ray analysis. FAB-MS *m/z* (assignment. rel intensity): 629 ([4-NCH₃NCTPP]⁺, 27.35), 681 $([Mn(4-NCH_3NCTPP)]^+, 100), 762 ([Mn(4-NCH_3NCTPP)Br +$ H]⁺, 4.67). UV-vis spectrum, λ (nm) [$\varepsilon \times 10^{-3}$, M⁻¹cm⁻¹] in CH2Cl2: 396 (35.9), 416 (34.1), 459 (24.6), 508 (59.3), 582 (10.7), 752 (10.1), 815 (12.7), 884 (12.3). Anal. Calcd. for C₄₅H₃₀BrMnN₄: C, 70.90; H, 3.90; N, 7.30. Found: C, 70.49; H, 4.17; N, 7.22.

Magnetic Susceptibility Measurements. The solid-state magnetic susceptibilities were measured under helium on a Quantum Design MPMS5 SQUID susceptometer from 2 to 300 K at a field of 5 kG. The sample was held in a Kel-F bucket. The bucket had been calibrated independently at the same field and temperature. The raw data for **5** were corrected for the molecular diamagnetism. The diamagnetic contribution of the complex **5** was measured from an analogous diamagnetic metal complex, that is, **6**. The details of the diamagnetic corrections made can be found in ref 9.

Spectroscopy. ESR spectra were measured on an X-band Bruker EMX-10 spectrometer equipped with an Oxford Instruments liquid helium cryostat. Magnetic field values were measured with a digital counter. The X-band resonator was a dual-mode cavity (Bruker ER 4116 DM). ¹H NMR spectra were recorded at 599.95 MHz on a Varian Unity Inova-600 spectrometer using the solvent CDCl3 and δ = 7.24 as the reference peak. Element analyses were carried out on an Elementar Vario EL III analyzer.

The positive-ion fast atom bombardment mass spectrum (FABMS) was obtained in a nitro benzyl alcohol (NBA) matrix using a JEOL JMS-SX/SX 102A mass spectrometer. UV-vis spectra were recorded at 20 °C on a Hitachi U-3210 spectrophotometer.

Crystallography. Table 1 presents the crystal data as well as other informations for **⁵** and **⁶** · 2(0.2MeOH). Measurements were taken on a Bruker AXS SMART-1000 diffractometer using monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were made for both complexes. The structures were solved by direct methods $(SHELXTL-97)^{11}$ and refined by the full-matrix least-squares method. All non-hydrogen atoms were refined with anisotropic thermal parameters, whereas all hydrogen atoms were placed in calculated positions and refined with a riding model. The Br coordination to Mn(1) within **5** is disordered with an occupancy factor of 0.6 for Br(1) and 0.4 for Br(1'). These Br(1) and Br(1') atoms were also refined with anisotropic thermal parameters. Table 2 lists selected bond distances

and angles for both complexes. (7) Ou, W.; Ding, T.; Cetin, A.; Harvey, J. D.; Taschner, M. J.; Ziegler, C. J. *J. Org. Chem.* **2006**, *71*, 811.

⁽⁸⁾ Chmielewski, P. J.; Latos-Grazynski, L. *J. Chem. Soc., Perkin Trans. 2* **1995**, 503.

⁽⁹⁾ Drago, R. S. *Physical Methods for Chemists*, 2nd ed.; Saunders College Publishing: New York, 1992; pp 473-475, 591-593.

⁽¹¹⁾ Sheldrick, G. M. *SHELXL-97. Program for Refinement of Crystal Structure from Diffraction Data*; University of Gottingen: Gottingen, Germany, 1997.

⁽¹²⁾ Xie, Y.; Morimoto, T.; Furuta, H. *Angew. Chem., Int. Ed.* **2006**, *45*, 6907.

Table 1. Crystal Data for **⁵** and **⁶** · 2(0.2MeOH)

Table 2. Selected Bond Distances (Å) and Angles (deg) for Compounds **⁵** and **⁶** · 2(0.2MeOH)

Results and Discussion

Molecular Structures of 5 and 6 · **2(0.2MeOH).** Mn(2- NCH3NCTPP)Br **(5)** was produced in 61% yield by heating a 2-NCH₃NCTPPH (3) solution in CH₂Cl₂/MeOH under aerobic conditions with an excess of $MnBr₂$ (Scheme 1).

The complex Sn(2-NCH₃NCTPP)Cl₂ (6) was synthesized in 66% yield by reacting 2-NCH3NCTPPH (**3**) with excess SnCl2 in pyridine under aerobic conditions (Scheme 1). X-ray structures are depicted in Figure 1a for complex **5** and Figure 1b for **⁶** · 2(0.2MeOH).

The geometry of the coordination around Mn(III) in **5** is closely related to a square-base pyramid, giving a trigonal distortion parameter (*τ*) value of 0.01, with Mn(III) having coordination of five, MnN3CBr, with normal bonds to the $N(1)$, $N(2)$, $N(3)$, $C(2)$, and $Br(1)$ atoms. The bond lengths of $Mn(1)-C(2)$, $Mn(1)-N(1)$, $Mn(1)-N(2)$, $Mn(1)-N(3)$,

Figure 1. (a) Molecular structure of Mn(2-NCH3NCTPP)Br (**5**) and (b) Sn(2-NCH3NCTPP)Cl2 · 2(0.2MeOH); **⁶** · 2(0.2MeOH)], with 30% thermal ellipsoids. Hydrogen atoms and solvent MeOH for **⁶** · 2(0.2MeOH)] are omitted for clarity.

Scheme 1

and Mn(1)-Br(1) in **⁵** are 2.008(5), 2.051(4), 2.047(4), 2.022(4), and 2.570(4) Å, respectively (Table 2).

In $6 \cdot 2(0.2 \text{MeOH})$, the geometry about Sn is a slightly distorted octahedron and has six-coordination with two axial

Figure 2. View of the one-dimensional network of **5** linked through weak hydrogen bonds in the unit cell.

chloride ligands; the bond distances are as follows: $Sn-Cl(1)$ $= 2.5116(17), Sn-C(7) = 2.063(19), Sn-N(1) = 2.123(5),$ and $Sn-N(3A) = 2.084(14)$ Å (Table 2). The tin atom in **⁶** · 2(0.2MeOH) is directly in the plane of the four internal core atoms, and the manganese in **5** lies 0.33 Å above the plane of the core atoms. The structure of **⁶** · 2(0.2MeOH) is similar to that of the Sn^{4+} complex of N-confused tetraphenylporphyrin Sn(NCTPP)Cl₂.¹²

The crystal packing of complex **5** along the *b* axis is shown in Figure 2 in which weak hydrogen bonds link the mononuclear Mn(2-NCH3NCTPP)Br units into an extended one-dimensional chain.

The $C(45)-H(45A) \cdots Br(1)$ hydrogen bond is formed mainly between $C(45)$ and $Br(1)$ with a $C(45)\cdots Br(1)$ distance of 3.907(4) Å and a corresponding angle of 162.17(14)° (Table 2). The short interatomic contacts of $H(45A)\cdots Br(1) = 2.982(4)$ Å provide the most likely exchange pathway (Table 2).

Spin Hamiltonian. The quintet energy levels of the highspin mononuclear Mn^{3+} (*S* = 2) are parametrized in terms of the spin Hamiltonian^{13–15}

$$
(\widehat{H}_s)_1 = D\Big[S_z^2 - \frac{1}{3}S(S+1)\Big] + E(S_x^2 - S_y^2) + \beta HgS \quad (1)
$$

where H is the applied magnetic field, g is the g tensor, S is the electronic spin, and *D* and *E* are the parameters which describe the effects of the axial and rhombic ligand field, respectively. The zero-field interaction splits the levels of system with $S = 2$ spin into two doublets, one of them is a linear combination of the $m_s = |\pm 2\rangle$ states, that is, $[|2^+\rangle$, $|2^{-}\rangle$], and the other one of the $m_s = |\pm 1\rangle$ states, that is, $[11^{+}\rangle$,

Figure 3. Temperature variation of the molar magnetic susceptibility (χ_m) and effective magnetic moment (μ_{eff}) for the powder sample of 5 in the range $2-300$ K. Points represent the experimental data; solid lines represent the least-squares fit of the data to eq 2.

 $|1-\rangle$], and a singlet corresponding to the $m_s = |0\rangle$ state,that is, $|0'\rangle$.¹⁶ The forbidden EPR transitions may be observed between the levels of the $|2^{+}\rangle$, $|2^{-}\rangle$ non-Kramer's doublet.^{1,16}

Magnetic Properties. Magnetic data for complex **5** are reported in Figure 3 in the forms of $\chi_{\rm m}$ and $\mu_{\rm eff}$ versus *T*.

As can be seen in Figure 3, the μ_{eff} for 5 remains constant at 4.83 μ B from 300 K down to 30 K, below which it rises slowly to 5.25 μ _B at 3 K before decreasing again. This kind of behavior is expected for a high-spin mononuclear Mn(III) $(S = 2)$ complex for 5 in which there is appreciable zerofield splitting of the ground state and/or weak ferromagnetic magnetic coupling. Low-symmetry $S = 5/2$ Mn(II) species, which may be present as impurities in Mn(III) compounds, can also give rise to downfield EPR signals near $g = 2$. The molecular structure of **5** shows that the metal (Mn) centers are linked by weak $C(45)-H(45)\cdots Br(1)$ hydrogen bonds (Figure 2), and it is known that such interactions are able to transmit interactions. From a magnetic point of view, the weak one-dimensional arrangement of **5** may then be reduced to a dinuclear one. 17 The possibility of weak magnetic exchange in **5** with the spin Hamiltonian $(\hat{H}_s)_{2} = -2\vec{J}\vec{S}_1 \cdot \vec{S}_2$ + $\beta Hg_s \cdot \tilde{S}_t$ for Mn³⁺ ··· Mn³⁺ dimer (with $S_1 = S_2 = 2$) is
included in fitting the magnetic susceptibility data ¹⁸ Here included in fitting the magnetic susceptibility data.¹⁸ Here \vec{S}_t is the total spin operator, that is, $S_t = 0, 1, 2, 3, 4$ and g_s $=(g_1+g_2)/2$.¹⁸The data were inserted into the Bleaney-Bowers equation (eq 2) and the term p (or q) which is the fraction of Mn^{3+} (or $Mn^{3+} \cdots Mn^{3+}$ dimer), respectively, ^{19,20} where *y* $= 1.44D$ (cm⁻¹)/*T* and $x = 1.44J$ (cm⁻¹)/*T*. Here *g* is the average *g* value, TIP is the temperature independent paramagnetism, *p* (or *q*) is the fraction of Mn^{3+} (or $Mn^{3+} \cdots Mn^{3+}$ dimer), and other symbols have their standard meanings. The best fits as represented in Figure 3 gave the values of $g =$ $1.67, D = -2.4 \text{ cm}^{-1}, 2J = 1.12 \text{ cm}^{-1}, p = 0.56, q = 0.29,$
and a temperature independent paramagnetism value TIP and a temperature independent paramagnetism value TIP

⁽¹³⁾ Gerritsen, H. J.; Sabisky, E. S. *Phys. Re*V*.* **¹⁹⁶³**, *¹³²*, 1507. (14) Baranowski, J.; Cukierda, T.; Jezowska-Trzebiatowska, B.; Kozlowski, H. *J. Magn. Reson.* **1979**, *33*, 585.

⁽¹⁵⁾ Hendrich, M. P.; Debrunner, P. G. *Biophys. J.* **1989**, *56*, 489.

⁽¹⁶⁾ The formula for Non-Kramer's doublets are shown in the Supporting Information.

⁽¹⁷⁾ Costes, J. P.; Dahan, F.; Donnadieu, B.; Douton, M. J. R.; Garcia, M. I. F.; Bousseksou, A.; Tuchaguess, J. P. *Inorg. Chem.* **2004**, *43*, 2736.

⁽¹⁸⁾ Yang, F. A.; Guo, C. W.; Chen, Y. J.; Chen, J. H.; Wang, S. S.; Tung, J. Y.; Hwang, L. P.; Elango, S. *Inorg. Chem.* **2007**, *46*, 578.

⁽¹⁹⁾ Mathe, J.; Schinkel, C. J.; Amstel, W. A. V. *Chem. Phys. Lett.* **1975**, *33*, 528.

⁽²⁰⁾ Yates, M. L.; Arif, A. M.; Manson, J. L.; Kalm, B. A.; Barkhart, B. M.; Miller, J. S. *Inorg. Chem.* **1998**, *37*, 840.

$$
\overline{\chi}_{M} = \frac{0.3749}{T} g^{2} \{p \cdot \frac{1}{3} \left[\frac{8 + 2e^{3y} + \frac{1}{y} \left(-\frac{8}{3} - \frac{28}{3}e^{3y} + 12e^{4y}\right)}{2 + 2e^{3y} + e^{4y}} \right] \tag{2}
$$
\n
$$
+ q \left[\frac{2e^{2x} + 10e^{6x} + 28e^{12x} + 60e^{20x}}{1 + 3e^{2x} + 5e^{6x} + 7e^{12x} + 9e^{20x}} \right] + (1 - p - q) \times 2.917\} + TIP
$$
\n
$$
\overline{Mn^{3+} \cdots Mn^{3+}(\text{dimer})} \qquad \overline{Mn^{2+}(\text{impurity})}
$$

 $=1.4 \times 10^{-4}$ cm³/mol. The negative value of $-2J$ indicates a weak ferromagnetic nature of the spin coupling in $Mn^{3+} \cdots Mn^{3+}$ (dimer). The intrachain Mn \cdots Mn separations of 9.558(4) Å in **⁵** precludes direct metal-metal bonding, so superexchange via the $C(45)-H(45A)\cdots Br(1)$ hydrogen bonding in $Mn^{3+} \cdots Mn^{3+}$ (dimer) must be responsible for this ferromagnetic interaction (Figure 2). The shortest interchain Mn $\cdot\cdot\cdot$ Mn distance of 11.508(4) Å indicates that the interchain interactions are expected to be negligible. This ferromagnetic interaction is quite weak, that is, similar to the previous result showing that coupling of Mn(III) ions with $J = -0.2$ cm⁻¹ in the complex (N-(2-hydroxybenzoyl)-N′-(2-hydroxybenzylidene)propane-1,2-diamine)-bis(methanol-O)-manganese(III), L⁶Mn(CH₃OH)₂, through π -π stacking, although antiferromagnetic.¹⁷

ESR Studies. The X-band EPR spectra of a frozen solution of 5 in CHCl₃ at 4 K is shown in Figure 4.

The field position and shape of the observed peak signal at $g = 9.19$ (or 10.4) in parallel mode (or perpendicular mode) are close to those observed for tris(acetylacetonato) manganese(III), $Mn(acac)₃$, and are attributed to a forbidden transition within the $|2^{+}\rangle$ and $|2^{-}\rangle$ non-Kramer's doublet (Figure 4).^{1,16} The resonance field for the transition between the ε |2⁺ \rangle and ε |2⁻ \rangle levels at a given *hv* quantum is calculated either from eq $3^{13,15}$

$$
|\varepsilon|2^{+}\rangle - \varepsilon|2^{-}\rangle| = 2\sqrt{3}r\sin\left(\frac{\phi}{3} + 120^{\circ}\right) = h\nu
$$
 (3)

where $r = [(4g^2\beta^2H^2)/3 + (16D^2)/9 + 4E^2]^{1/2}$, cos $\phi = (-q_1H^2 - q_2)/(2r^3)$, a. $\equiv (-32Dg^2/3/3)$ and $q_2 = (128D^3)/27 +$ $q_2 = (q_2)/(2r^3)$, $q_1 = (-32Dg^2\beta^2)/3$, and $q_2 = (128D^3)/27 + 16DE^2$ or from eq. 4^{14,16} 16*DE*² , or from eq 414,16

$$
F_1H^6 + F_2H^4 + F_3H^2 + F_4 = 0 \tag{4}
$$

where $F_1 = 4p_1^3$, $F_2 = 12p_1^2p_2 + 9p_1^2(hv)^2 + 27q_1^2$, $F_3 = 12p_1p_2^2 + 18p_1p_2(hv)^2 + 6p_1(hv)^4 + 54q_2q_2$, $F_4 = 4p_2^3 +$ $12p_1p_2^2 + 18p_1p_2(hv)^2 + 6p_1(hv)^4 + 54q_1q_2$, $F_4 = 4p_2^3$
 $9p_2^2(hv)^2 + 6p_2(hv)^4 + (hv)^6 + 27a_2^2$, $p_1 = -4a^2\beta^2$, and $9p_2^2(hv)^2 + 6p_2(hv)^4 + (hv)^6 + 27q_2^2$, $p_1 = -4g^2\beta^2$, and $p_2 = (-16D^2)/3 - 12F^2$ $= (-16D^2)/3 - 12E^2.$
The rhombic zero fie

The rhombic zero field parameter $E = -1.3 \times 10^{-3}$ cm⁻¹ is obtained by substitution of $D = -2.4$ cm⁻¹ and the field position of $g = 9.19$ ($H = 730.5$ G) into either eq 3 or eq 4. Despite the lack of a *C*⁴ rotation axis, compound **5**, which is five-coordinate, shows relatively little rhombic ZFS. This ZFS is different from that of $Mn(NCTPP)(py)_2$ (2), which is six-coordinate and has a relatively large magnitude, highly rhombic ZFS: $D = -3.08$ cm⁻¹, $E = -0.61$ cm⁻¹.

Conclusions

We have investigated two new inverted N-methyl porphyrin metal complex, namely, one paramagnetic **5** and one

Figure 4. X-band ESR spectra for 5 in CHCl₃ at 4 K: (a) parallel polarization, (b) perpendicular polarization. ESR conditions: microwave frequency of 9.398 GHz (parallel polarization), 9.650 GHz (perpendicular polarization); microwave power of 3.994 mW, magnetic field modulation amplitude of 1.60 G, and modulation frequency of 100.00 KHz.

diamagnetic **6**, and their X-ray structures are established. A technique is also reported by combining the conventional ESR spectroscopy and magnetic susceptibility measurements to evaluate the ZFS parameters (*D* and *E*) for the high-spin mononuclear Mn(III) $(S = 2)$ of 5. The complex 5 is a mononuclear complex linked through $H(45A) \cdots Br(1)$ hydrogen bonds into a one-dimensional chain and displays simple weak ferromagnetism between the Mn(III) ions.

Acknowledgment. The financial support from the National Science Council of the ROC under Grant NSC 95-2113-M-005-014-MY3 is gratefully acknowledged. We thank Dr. S. Elango for helpful discussions.

Supporting Information Available: The formula for non-Kramer's doublets, ORTEP drawings with the atom-labeling schemes for complexes **⁵** and **⁶** · 2(0.2MeOH) (30% probability ellipsoids), and SQUID magnetic susceptibility for **5** in the temperature range of $2-100$ K. This material is available free of charge via the Internet at http://pubs.acs.org.

IC800490T